
Bring your own
payloads

With C#

$whoami

● IIUM student majoring in Information Technology
● I play CTF/boot2root
● Doing internship [Current]

Agenda

● Why bother creating custom payload?

● Demo 1: Running the shellcode

● Demo 2: Process Injection and Shellcode obfuscation

● Sharperner: What is does?

● Bonus!

Why bother creating custom payload?

● No one knows your environment, it’s only you.

● Know your payload well

● If you’re lucky, it might even evade AV

hash/signature detection

Demo 1:
Running the shellcode

Lets pop up calc.exe

1. Download awesome script from here

https://pastebin.com/gi1Rw7wx

2. Generate shellcode with msfvenom

msfvenom -p windows/x64/exec CMD=”calc.exe” -f csharp

3. Replace SHELLCODE section with the generated msfvenom shellcode

4. Compile with csc.exe

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe C:\Windows\Tasks\file.cs

https://pastebin.com/gi1Rw7wx

Demo 2:
Process Injection and
Shellcode obfuscation

Injecting shellcode into a legitimate process

XOR shellcode

1. Use cyberchef or any XOR Cryptor to

XOR with a key

2. Convert obfuscated bytes to base64

encoded string

3. Paste in the code and compile with

csc.exe

4. Spawn a calc.exe ;-)

Sharperner:
Simple payload creation framework

What’s the goal?

● Bypassing signature detection (MS Defender and most AV
vendors)

● Bypassing EDR hooking by using:-
○ Direct syscalls
○ Manual Mapping (D/Invoke)

● Stay updated and changing code logic to avoid signature
detection

● OPSEC friendly

Obfuscation and Encryption

● Encrypt raw/b64/hex shellcodes with AES symmetric
encryption logic

● XOR obfuscated shellcode
● Encode to base64
● Translate base64 to custom morse code

Manual mapping WinAPI with
D/Invoke

How EDR hooks malicious api calls

Bonus!

What is AMSI?

● Antimalware Scan Interface
● Detect malicious strings in executed command

What is CLR?

CLR uses a private function called AmsiScan to detect

unwanted software passed via a Load method.

Detection can result in termination of a .NET process.

 CLR implementation of AMSI
https://modexp.wordpress.com/2019/06/03/disable-amsi-wldp-dotnet/#clr_impl

Weaponizing native PE files for C# Memory
Deployment

Sharperner is able to /convert PE executable into .NET by using
Manual Mapping (D/Invoke)

This is useful to:-

● Bypass EDR rules for command signature.

● Load assembly reflectively (i.e. execute-assembly)

● Execute payload in memory without touching disk

Thank you!

Q&A Session

